โ”€โ”€โ”€โœฑ*.๏ฝก:๏ฝกโœฑ*.:๏ฝกโœง*.๏ฝกโœฐ*.:๏ฝกโœง*.๏ฝก:๏ฝก*.๏ฝกโœฑ โ”€โ”€โ”€

Module 9

    • Given that the definition of an odd number is 2๐‘˜+1, whereas an even number is 2๐‘˜, we can prove that the sum of two odd integers is even.
    • Given some odd integer, 2๐‘›+1, and another 2๐‘š+1, the sum is 2๐‘›+1+2๐‘š+1=2๐‘›+2๐‘š+2=2(๐‘›+๐‘š+1) which is of form 2๐‘˜. โ–ก
    • Let ๐‘Ÿ be some rational number and ๐‘ฅ be some irrational number.
    • Suppose ๐‘Ÿ+๐‘ฅ is rational, this means that there exists some ๐‘ฆ such that ๐‘Ÿ+๐‘ฅ=๐‘ฆ, where ๐‘ฆ is rational.
    • You can isolate ๐‘ฅ, ๐‘ฅ=๐‘ฆโˆ’๐‘Ÿ. Since ๐‘ฆ and ๐‘Ÿ are both rational, the difference of two rational numbers is also rational. This would imply that ๐‘ฅ is rational, but that contradicts the original assumption.
    • Since the assumption that ๐‘Ÿ+๐‘ฅ is a contradiction, ๐‘Ÿ+๐‘ฅ must be irrational.
    • โˆด The sum of an irrational number and a rational number is irrational. โ–ก
    • A rational number is defined as the ratio of two integers, such that ๐‘Ÿ=๐‘Ž๐‘, where ๐‘Ž and ๐‘ are integers, and ๐‘โ‰ 0.
    • Let ๐‘› and ๐‘š be two rational numbers, ๐‘›=๐‘Ž1๐‘1, and ๐‘š=๐‘Ž2๐‘2.
    • Multiplying ๐‘› and ๐‘š results in ๐‘›ร—๐‘š=๐‘Ž1ร—๐‘Ž2๐‘1ร—๐‘2.
    • Since the product of two integers is also an integer, ๐‘›ร—๐‘š follows the form of ๐‘Ž๐‘, where both ๐‘Ž and ๐‘ are integers.
    • โˆด The product of two rational numbers is always rational. โ–ก
    • A number is even if it follows the form 2๐‘˜, and odd if it follows the form 2๐‘˜+1.
    • Given that the product of ๐‘š๐‘› is even, it is of the form ๐‘š๐‘›=2๐‘˜.
    • Assuming both are odd, ๐‘š=2๐‘Ž+1, and ๐‘›=2๐‘+1.
    • ๐‘š๐‘›=(2๐‘Ž+1)(2๐‘+1)=2๐‘Žร—2๐‘+2๐‘Ž+2๐‘+1=4๐‘Ž๐‘+2๐‘Ž+2๐‘+1 which is odd.
    • Since ๐‘š๐‘› is odd if both ๐‘š and ๐‘› are odd, then at least one of ๐‘š or ๐‘› must be even for ๐‘š๐‘› to be even. โ–ก
    • a.
      • The contrapositive is if ๐‘› is odd, then ๐‘›3+5 is even.
      • Assuming ๐‘› is odd, ๐‘›=2๐‘˜+1, ๐‘›3=(2๐‘˜+1)3=8๐‘˜3+12๐‘˜2+6๐‘˜+1, which is odd.
      • ๐‘›3+5 would therefore have to be even, since the sum of two odd numbers is even.
      • โˆด By contraposition, ๐‘› must be even give that ๐‘›3+5 is odd.
    • b.
      • Suppose ๐‘›3+5 is odd, and ๐‘› is also odd.
      • Suppose ๐‘› is odd, ๐‘›=2๐‘˜+1,๐‘›3=(2๐‘˜+1)3=8๐‘˜3+12๐‘˜2+6๐‘˜+1, which is odd.
      • ๐‘›3+5 would be even, but the original statement was that ๐‘›3+5 is odd, which is a contradiction.
      • โˆด We can conclude that ๐‘› must be even given that ๐‘›3+5 is odd. โ–ก

Module 10

    • a.๐‘ƒ(1)=12=1(1+1)(2โ‹…1+1)6
    • b.1ร—2ร—36=66=1
    • c.12+22+โ€ฆ+๐‘˜2=๐‘˜(๐‘˜+1)(2๐‘˜+1)6,๐‘˜โˆˆโ„ค+
    • d.12+22+โ€ฆ+๐‘˜2+(๐‘˜+1)2=(๐‘˜+1)(๐‘˜+2)(2(๐‘˜+1)+1)6
    • e.12+22+โ€ฆ+๐‘˜2+(๐‘˜+1)2=(๐‘˜+1)(๐‘˜+2)(2(๐‘˜+1)+1)6=(๐‘˜+1)(๐‘˜+2)(2๐‘˜+3)6
      • Left Side: (12+22+โ€ฆ+๐‘˜2)+(๐‘˜+1)2
      • Substitute: ๐‘˜(๐‘˜+1)(2๐‘˜+1)6+(๐‘˜+1)2
      • Factor out (๐‘˜+1): ๐‘˜(๐‘˜+1)(2๐‘˜+1)6+6(๐‘˜+1)26=(๐‘˜+1)(๐‘˜(2๐‘˜+1)+6(๐‘˜+1))6
      • Expand: (๐‘˜+1)(2๐‘˜2+๐‘˜+6๐‘˜+6)6=(๐‘˜+1)(2๐‘˜2+7๐‘˜+6)6
      • Factor (2๐‘˜2+7๐‘˜+6): (๐‘˜+1)(๐‘˜+2)(2๐‘˜+3)6 which matches right-hand.
    • f. Since we have proven ๐‘ƒ(1) is true and that if ๐‘ƒ(๐‘˜) is true, then ๐‘ƒ(๐‘˜+1) is true, induction guarantees that the formula holds for all positive integers ๐‘›. โ–ก
    • a.๐‘ƒ(1)=13=(1(1+1)2)2
    • b.1=(1ร—22)2=(22)2=12=1
    • c.13+23+โ€ฆ+๐‘˜3=(๐‘˜(๐‘˜+1)2)2,๐‘˜โˆˆโ„ค+
    • d.13+23+โ€ฆ+๐‘˜3+(๐‘˜+1)3=((๐‘˜+1)(๐‘˜+2)2)2
    • e.(13+23+โ€ฆ+๐‘˜3)+(๐‘˜+1)3
      • Substitute: (๐‘˜(๐‘˜+1)2)2+(๐‘˜+1)3
      • Factor out (๐‘˜+1)3: ๐‘˜2(๐‘˜+1)24+4(๐‘˜+1)34=(๐‘˜+1)2(๐‘˜2+4(๐‘˜+1))4
      • Expand: (๐‘˜+1)2(๐‘˜2+4(๐‘˜+1))4=(๐‘˜+1)2(๐‘˜2+4๐‘˜+4)4=(๐‘˜+1)2(๐‘˜+2)24
      • Simplify: ((๐‘˜+1)(๐‘˜+2)2)2 which matches right-hand.
    • f. Since we proved ๐‘ƒ(1) is true, and that if ๐‘ƒ(๐‘˜) is true, then ๐‘ƒ(๐‘˜+1) is true, induction guarantees that the formula holds for all positive integers ๐‘›. โ–ก
    • Base Case (๐‘›=0): (2(0)+1)2=12=1โ‰ก(0+1)(2(0)+1)(2(0)+3)3=1ร—1ร—33=33=1
    • Inductive Hypothesis: 12+32+52+โ€ฆ+(2๐‘˜+1)2=(๐‘˜+1)(2๐‘˜+1)(2๐‘˜+3)3,๐‘˜โˆˆโ„ค+
    • Inductive Step: 12+32+52+โ€ฆ+(2๐‘˜+1)2+(2(๐‘˜+1)+1)2=(๐‘˜+2)(2(๐‘˜+1)+1)(2(๐‘˜+1)+3)3
      • Substitute: (๐‘˜+1)(2๐‘˜+1)(2๐‘˜+3)3+(2๐‘˜+3)2
      • Expand: (๐‘˜+1)(2๐‘˜+1)(2๐‘˜+3)3+3(2๐‘˜+3)23=(๐‘˜+1)(2๐‘˜+1)(2๐‘˜+3)+3(2๐‘˜+3)23
      • Factor out (2๐‘˜+3): (2๐‘˜+3)((๐‘˜+1)(2๐‘˜+1)+3(2๐‘˜+3))3
      • Expand: (2๐‘˜+3)(2๐‘˜2+๐‘˜+2๐‘˜+1+6๐‘˜+9)3=(2๐‘˜+3)(2๐‘˜2+9๐‘˜+10)3
      • Factor: (2๐‘˜+3)(๐‘˜+2)(2๐‘˜+5)3
      • Since 2(๐‘˜+1)+1=2๐‘˜+3 and 2(๐‘˜+1)+3=2๐‘˜+5, the sides match
    • Since the formula holds for ๐‘›=0, and that if the formula holds for ๐‘›=๐‘˜, then it also holds for ๐‘›=๐‘˜+1, by induction, the formula is true for all positive integers ๐‘›. โ–ก
    • Base Case (๐‘›=1): 1ร—1!=1โ‰ก(1+1)!โˆ’1=2!โˆ’1=2โˆ’1=1
    • Inductive Hypothesis: 1ร—1!+2ร—2!+โ€ฆ+๐‘˜ร—๐‘˜!=(๐‘˜+1)!โˆ’1,๐‘˜โˆˆโ„ค+
    • Inductive Step: 1ร—1!+2ร—2!+โ€ฆ+๐‘˜ร—๐‘˜!+(๐‘˜+1)ร—(๐‘˜+1)!=(๐‘˜+2)!โˆ’1
      • Substitute: (๐‘˜+1)!โˆ’1+(๐‘˜+1)ร—(๐‘˜+1)!
      • Factor out (๐‘˜+1)!: (๐‘˜+1)!โˆ’1+(๐‘˜+1)(๐‘˜+1)!=(๐‘˜+1)!(1+(๐‘˜+1))โˆ’1=(๐‘˜+1)!(๐‘˜+2)โˆ’1=(๐‘˜+2)!โˆ’1, which matches the formula
    • Since the formula holds for ๐‘›=1, and that if the formula holds for ๐‘›=๐‘˜, then it also holds for ๐‘›=๐‘˜+1, by induction, the formula is true for all positive integers ๐‘›. โ–ก
    • Base Case (๐‘›=0): 3โ‰ก3(50+1โˆ’1)4=3(5โˆ’1)4=3ร—44=3
    • Inductive Hypothesis: 3+3ร—5+3ร—52+โ€ฆ+3ร—5๐‘˜=3(5๐‘˜+1โˆ’1)4,๐‘˜โˆˆโ„ค+
    • Inductive Step: 3+3ร—5+3ร—52+โ€ฆ+3ร—5๐‘˜=3(5๐‘˜+1โˆ’1)4
      • Substitute: 3(5๐‘˜+1โˆ’1)4+3ร—5๐‘˜+1
      • Factor out 3: 3(5๐‘˜+1โˆ’1)4+12ร—5๐‘˜+14=3(5๐‘˜+1โˆ’1)+12ร—5๐‘˜+14=3(5๐‘˜+1)โˆ’3+12(5๐‘˜+1)4=15(5๐‘˜+1)โˆ’34=3(5ร—5๐‘˜+1โˆ’1)4=3(5๐‘˜+2โˆ’1)4, which matches the formula
    • Since the formula holds for ๐‘›=0, and that if the formula holds for ๐‘›=๐‘˜, then it also holds for ๐‘›=๐‘˜+1, by induction, the formula is true for all positive integers ๐‘›. โ–ก
    • Base Case (๐‘›=0): 2โ‰ก1โˆ’(โˆ’7)0+14=1+74=84=2
    • Inductive Hypothesis: 2โˆ’2ร—7+2ร—72โˆ’โ€ฆ+2(โˆ’7)๐‘˜=1โˆ’(โˆ’7)๐‘˜+14,๐‘˜โˆˆโ„ค+
    • Inductive Step: 2โˆ’2ร—7+2ร—72โˆ’โ€ฆ+2(โˆ’7)๐‘˜=1โˆ’(โˆ’7)๐‘˜+14
      • Substitute: 1โˆ’(โˆ’7)๐‘˜+14+2(โˆ’7)๐‘˜+1
      • Factor out 2(โˆ’7)๐‘˜+1: 1โˆ’(โˆ’7)๐‘˜+1+8(โˆ’7)๐‘˜+14=1โˆ’(โˆ’7)๐‘˜+1+8(โˆ’7)๐‘˜+14=1+7(โˆ’7)๐‘˜+14=1โˆ’(โˆ’7)๐‘˜+24, which matches the formula
    • Since the formula holds for ๐‘›=0, and that if the formula holds for ๐‘›=๐‘˜, then it also holds for ๐‘›=๐‘˜+1, by induction, the formula is true for all positive integers ๐‘›. โ–ก

โ”€โ”€โ”€โœฑ*.๏ฝก:๏ฝกโœฑ*.:๏ฝกโœง*.๏ฝกโœฐ*.:๏ฝกโœง*.๏ฝก:๏ฝก*.๏ฝกโœฑ โ”€โ”€โ”€