───✱*.。:。✱*.:。✧*.。✰*.:。✧*.。:。*.。✱ ───

Propositions

  • A declarative statement that can either be true or false
    • “Earth is flat” → T
    • “Ten is less than seven” → F

Boolean Algebra

Conditional Statements

  • Negation (¬) → not
  • Conjunction () → and
  • Disjunction () → or
  • Exclusive Or () → xor

Variations

  • Implication (𝑝𝑞) → if 𝑝 then 𝑞
    • 𝐹𝑇=𝑇 → vacuous truth
  • Converse (q p)
    • If you failed the course, then you did poorly on an exam
  • Inverse (¬𝑝¬𝑞)
    • You did not do poorly on an exam, you will not fail the course
  • Contrapositive (¬𝑞¬𝑝𝑞𝑝)
    • If you didn’t fail, you didn’t do poorly on a test
  • Biconditional (𝑝𝑞) → “if and only if”
    • 𝑝𝑞𝑞𝑝

Vacuous Truth

  • If 𝑝 is false, 𝑝𝑞 is always true.

Predicates + Quantifiers

  • Predicate → a function that returns a boolean value based on input
    • 𝑃(𝑥)=𝑥𝑥<10
  • Universal Quantifier → for all 𝑥, 𝑃(𝑥) must be true
    • 𝑥(𝑥20)
  • Existential Quantifier → there exists and 𝑥 where 𝑃(𝑥) is true
    • 𝑥(𝑥)

Terms

  • Tautology → a statement that is always true
    • 𝑝¬𝑝
  • Contradiction → a statement that is always false
    • 𝑝¬𝑝

Logical Properties

  • Commutative → 𝑝𝑞=𝑞𝑝
  • Associative → (𝑝𝑞)𝑟=𝑝(𝑞𝑟)
  • Distributive → 𝑝(𝑞𝑟)=(𝑝𝑞)(𝑞𝑟)

───✱*.。:。✱*.:。✧*.。✰*.:。✧*.。:。*.。✱ ───